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Abstract: Core body temperature (Tcore) is a key indicator of personal thermal comfort and
serves as a monitor of thermal strain. Multi-parametric sensors are not practical for estimating
core temperature because they require long data collection times and a wide variety of settings.
This study introduces dorsal hand vein dynamics as a novel indicator along with heart rate (HR)
and dorsal hand skin temperature (Thand) for predicting Tcore during rest following Tcore elevation.
Twelve healthy males aged 27± 9 years old participated in the experiment. The experimental
procedure consisted of a 10-min rest followed by 60 min of passive heat stress induced by leg
immersion in hot water at 42°C and a 40-min thermal relaxation period after the legs were
removed from the water. A near-infrared (NIR) imaging system was configured to monitor
the dorsal hand veins during the entire experimental session. The values of HR, Thand, and
Tcore were continuously monitored while the ambient temperature and relative humidity (RH)
were maintained in a climate chamber at 20°C and 50%, respectively. Our selected predictor
parameters demonstrated similar patterns in the Tcore such that the value increased as a result
of passive heat stress and decreased in the thermal relaxation phase. The experimental data
were divided into two phases: thermal stress and relaxation. At the resting condition, inclusion
of the hand vein diameter (VD) improved the multiple linear regression value (R2) about 26%.
At the relaxation phase, however, training regressions R2 = 0.68 and R2 = 0.94 were observed
in the regression model with and without considering VD, respectively. The test regression
value of R2 = 0.88 and the root mean square error (RMSE) of 0.18°C showed good agreement
with the predicted values. These findings demonstrate acceptable validity of the non-invasive
Tcore estimation at the resting condition. In particular, the inclusion of VD as a predictor in the
regression analysis increases the prediction accuracy with a lower RMSE value.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Core temperature (Tcore), also known as body core temperature, refers to the temperatures of
human internal organs such as the liver, stomach, bladder, and rectum. That is, Tcore does not
necessarily represent the temperature at a specific location; rather, it reflects the temperature of
inner tissue that does not change significantly by circulatory adjustment and environmental effects
[1]. The human body tends to maintain its Tcore within a very narrow range of 36.5°C–38.5°C
(or 97.7°F–101.3°F).
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Tcore is central to quantification of heat strain. However, regular measurement procedures for
obtaining rectal, esophageal, or gastrointestinal temperatures have low practicality outside of
a dedicated laboratory environment, particularly during long periods. Therefore, non-invasive
measures for monitoring heat strain are necessary. Previous studies using mathematical models
to predict Tcore have employed non-invasive physiological parameters including skin temperature
(Tskin), heat fluxes at various body sites, heart rate (HR), breathing frequency, accelerometer
data, and environmental climatic variables such as air temperature, radiant temperature, relative
humidity (RH), and wind speed [2–5]. However, further research is warranted to identify the
most relevant predictor variables and to examine the general validity of these models.

Measurement of Tcore can be a critical indicator of individual heat strain assessment during
field work or other movement [6,7]. It is impractical to use a multi-parametric sensing system
in a field setting because it requires extended measurement periods and a variety of settings.
Traditionally used laboratory rectal and esophageal probes are not practical for use in ambulatory
conditions. Several non-invasive methods used for estimating Tcore such as ingesting thermometer
pills [8] have shown great success in field settings. However, some patients with certain medical
conditions are advised to not ingest thermometer pills owing to contraindications, and the results
might be inaccurate if the patient consumes hot or cold fluids prior to measurement. Alternatively,
zero heat flux (ZHF) [9,10] and thermoregulatory [11–13] methods have gained attention for their
accuracy in measuring Tcore. However, these methods are more effective in laboratory settings
than in ambulatory or field conditions owing to the inconvenience of preparing the required
apparatus. Further, many researchers have developed techniques for estimating Tcore from HR
measurement. In particular, some studies employ various methods such as the Kalman filter (KF)
[14–16] model to estimate Tcore based on HR signals.

In addition, many medical researchers have studied the relationship between Tskin and Tcore to
develop a new approach for measuring Tcore using non-invasive methods [17,18]. In particular,
Niedermann et al. [4] developed an algorithm for predicting Tcore using Tskin measured at the
chest although. However, they used only highly professional instruments that are not suitable
for long-term continuous monitoring of subjects in natural habitats or in daily environments.
Therefore, this resource is limited because it is impractical to develop a complete algorithm for
predicting Tcore. Hand vein diameter (VD) is a potential predictor of Tcore, although little research
has focused on its relationship with Tcore.

It is widely accepted that efferent responses cause natural changes in the body’s self-protection
mechanism against extreme changes in temperature, resulting in sweating, vessel dilation, vessel
constriction, shivering, and other involuntary responses [19,20] as shown schematically in Fig. 1.
Considering that vessel dynamics, specifically VD, have a role in estimating Tcore, the combination
of VD, the temperature of a peripheral organ such as hand skin temperature (Thand), and HR data
can increase the accuracy of Tcore measurement in ambulatory or field conditions. Accordingly,
HR measurement based on a wearable apparatus and non-invasive techniques has been the focus
of recent relevant studies [4,21,22].

Considering the mobility and simplicity of the system used for personal and ambulatory
applications, near-infrared (NIR) imaging is a promising approach. Several potential applications
for VD measurement systems include driver monitoring in vehicles and user monitoring for
bicycles employed in physical training. In these approaches, it is important to monitor the HR
and Tcore of the drivers and trainees. By determining these values, the thermal comfort level of
an individual can be monitored, and safety systems installed in vehicles or exercise equipment
can be adjusted accordingly. Although such systems can be used as personal monitoring devices,
they can also be used to monitor the thermal state of a field worker in hot weather conditions.
The aim of this study is to observe that whether Tcore elevation is a driving force of peripheral
vein dilation such as dorsal metacarpal veins in a controlled room temperature. We performed a
multiple regression analysis to predict Tcore with physiological parameters such as HR, Thand, and
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Fig. 1. Schematic diagram describing the role of vein dynamics in thermoregulation.

VD that can be measured non-invasively. We hypothesize that Tcore would be a driving force to
dilate the peripheral veins for dissipating the heat from the skin as an action of thermoregulation.

2. Materials and methods

2.1. Subjects

Twelve male subjects between the ages of 24 and 41 with no diagnosed metabolic or cardiovascular
diseases were recruited for this study. The mean values for age, height, mass, and body mass
index (BMI) are shown in Table 1 as demographic characteristics. None of the subjects were
athletes, and any potential subject having cardiovascular, respiratory, or heat-related illnesses
or symptoms were excluded in the recruiting process. Each subject was instructed to refrain
from strenuous exercise and from consuming alcohol or caffeine prior 12 hours on the day of the
experiment [23,24] as well as to fast at least for 6 hours before arriving at the laboratory. The
objectives, procedures, potential discomfort, and risks of the present study were explained to
the subjects prior to the experiments, and all subjects signed informed consent documents. The
current study was performed in compliance with the guidelines and regulations issued by the
Institutional Review Board of Kookmin University.

Table 1. Demographic characteristics of the subjects participating in this study

No. of Subjects Age (years) Height (m) Weight (kg) BMI (kg/m2)

12 27± 9 1.74± 0.1 72.5± 12.2 23.8± 2.8

2.2. Experimental design

The participants arrived at a laboratory at Seoul National University between 09:00 and 12:00
KST during November and December 2020 for the experimental session. The environmental
conditions of the laboratory were 20°C and 50% RH. Prior to the experiment, the subjects were
familiarized with the experimental protocol, devices, and objectives of the study, and basic data
of the general clinical parameters were collected such as age, height, weight, recent diseases,
and abnormal health conditions while the subjects were resting at the lab facility. In the second
step, after remaining for about 30 min in the testing climate chamber, sensors for data collection
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were attached to each subject’s body. A non-invasive chest strap bearing an electrocardiogram
(ECG) sensor (RS400, Polar Electro Oy, Kempele, Finland) was attached to the chest of each
subject to monitor HR and ECG waveforms in real time at a data collection rate of 128 Hz.
In addition, a non-invasive skin temperature sensor (LT ST08-12, Gram, Tokyo, Japan) was
attached by adhesive tape to the skin of the dorsal part of each subject’s hand. Invasive core
temperature measurement was conducted using a rectal temperature sensor (LT ST08-11, Gram,
Tokyo, Japan). To assess the Tcore based on rectal temperature, each participant was instructed to
self-insert the sensor at least 15 cm beyond the anal sphincter [25].

The subjects immersed their lower legs up to the calf in water at a constant temperature
42°C± 2°C. The temperature of the hot water bath used for leg immersion (LH-300, Limho
Industry, Seoul, South Korea) was controlled to maintain temperature stability throughout the
experiment. A water bath [26] is commonly used for passively increasing Tcore and to relieve
physiological symptoms such as fatigue and insomnia. We selected the temperature of 42°C
for three reasons. First, the Tcore increases significantly with leg immersion in water bath [27].
Second, the reported pain threshold for skin (Tskin) is 45°C ± 1.7°C [28]. Third, the probability
of burning porcine skin is low at temperatures below 44°C; no significant quantitative differences
have been noted between human and porcine skin regarding susceptibility to thermal injury [29].

We selected the leg immersion technique for our experiment owing to its stable setting and
Tcore elevation capability. In this method, the subject can remain in the resting condition, and
the physiological dynamics are not strongly considered. A leg immersion period of 1 h was
needed to increase the Tcore about 0.6°C–1°C depending on the subject; the experiment was
terminated when the Tcore reached 39°C. Figure 2 shows a schematic diagram of the experimental
setup for Tcore elevation in the climate chamber. An NIR imaging system containing several
components was placed over the subject’s hand to capture sequential images of superficial veins
before and after thermal stimulation. We used an NIR charge-coupled device (CCD) camera
(Grasshopper3 GS3-U3-41C6NIR-C, FLIR, Wilsonville, Oregon, USA) and a high-resolution
lens (LYM1614, Tuss Vision Inc., Tokyo, Japan) with a bandpass filter (BP850, Midwest Optical
Systems, Palatine, Illinois, USA) to measure the VD. An NIR light-emitting diode light source
(LV-ILA-94SF-IR-850, LVS, Incheon, South Korea) was used for illuminating the veins on the
dorsal side of the hand. A schematic diagram of the NIR imaging setup is shown in the inset in
Fig. 2.

Finally, physiological data such as temperature and HR were recorded simultaneously according
to the acquisition rate for NIR imaging of the dorsal part of the hand.

2.3. Vein diameter

The raw images required further preprocessing prior to analysis to observe the sharp contrast of
the vein edges. Several techniques were used to enhance the images for digital analysis. The
target site of the blood vessel was geometrically corrected for reducing the shaking effect of
the subject’s hand, as described in our previous report [30]. The sequential images were first
cropped to a specific region of interest (ROI) based on the position in the image, as shown in
Fig. 3(a) and (b). We selected the convolutional neural network (CNN) for all image processing
in the VD analysis. Once the CNN was trained, no further processing was needed for the analysis.
Before programing input/output data in the machine learning model, the image frame data
were preprocessed in two steps. The images were first down-sampled to 256 × 256 pixels to
compensate for the computer’s limited graphics processing unit (GPU) memory allocation.

In the second step, the scaled images were enhanced after image down-sampling to improve
the contrast and details before the scaled images were applied to the input/output in the machine
learning model. The processes included the following algorithms. (1) Grayscale conversion:
The input patch images were first converted into grayscale format to train and predict the model
efficiently. Because the NIR images had no color channel, converting them into grayscale images
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Fig. 2. Schematic diagram of the experimental setup for elevating core temperature (Tcore)
by hot water leg immersion and for near-infrared (NIR) imaging of the dorsal hand veins.
Thermocouple temperature sensors were connected to a data logger for recording Tcore and
the skin temperature in dorsal hand (Thand). Another temperature sensor was placed in the
water bath to monitor the water temperature (Twater). For data collection, a heart rate (HR)
measurement sensor was attached to the subject’s chest, and a monitor was secured around
the wrist.

Fig. 3. (a) Region of interest (ROI) set in the sequential images based on the visibility and
existence of the vein. (b) Cropped image focusing on the vein pattern in the ROI. (c) The
cropped images were further processed to enhance the veins using the convolutional neural
network (CNN). Scale bar= 10 mm.

increased the model performance. (2) Dataset normalization: Each image was normalized across
the dataset whereby the minimum of each pixel value in the dataset was subtracted, and the result
was divided by the difference between the maximum and minimum pixel values of the dataset.
This result was then multiplied by 255 to match the image data format widely supported by
MATLAB (MathWorks, Natick, Massachusetts, USA). (3) Contrast limited adaptive histogram
equalization (CLAHE): Each image was tiled in an 8 × 8 pixel image before the histogram
was equalized. (4) Gamma adjustment: The gamma values were adjusted in each image to
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obtain better contrast. (5) Normalization to 0–1: The number of pixels in each image was
divided by 255 to match the image data format widely supported by MATLAB. (6) Training
dataset generation: Thirty-three full-sized images of 970 × 970 pixels were used to generate
the training and validation datasets. Thirteen full-sized images were included in the test dataset
and were downscaled to 256 × 256 pixels. To build the training–validation and test datasets,
the images were first used to manually generate the binary masks of the vein images. GNU
Image Manipulation Program (GIMP) image processing software was used to generate the vein
masks of the corresponding vein images, which were used as ground truth data for training the
model. In addition, the mask images for the test dataset were used for evaluating the training
model. An example of a CNN processed image is shown in Fig. 3(c). (7) Model architecture:
The image processing was based on the deep neural network following the procedure proposed
by Ronneberger et al. [31] as described in our previous study [30].

The NIR images were recorded at 1 min intervals for the core thermal elevation studies.
The images were post-processed using CNN to mask the vein images in a binary format. The
processed images were further analyzed through MATLAB using a custom-made algorithm.
The outputs of the MATLAB algorithm were stored in a Microsoft Excel document for further
analysis. The data were stored as pixel units and were later converted to actual units based on the
necessity.

2.4. Data processing

To analyze Tcore elevation, the data were recorded under thermoneutral conditions (20°C, 50%
RH) in a climate chamber (FLC-5000S, Fuji Medical Science, Kashiwa, Japan). The Thand,
chest temperature, forehead temperature, and Tcore were recorded every 5 s, and the data were
transferred from the data logger to the computer for storage in a text file for further analysis. A
non-invasive polar ECG strap was attached to the subject’s chest to record HR at an acquisition
rate of 1 Hz. These recorded data were transferred to a text file and stored at an interval of 1 min
for further processing in accordance with the image acquisition rate.

Microsoft Excel and SPSS software were used to process data for all statistical analyses. All
temperature readings were analyzed using Excel. The data were expressed as mean and standard
deviation values. The coefficient of variance (CV) was calculated to determine the accuracy of
measurement:

CV =
σ

u
, (1)

where σ and u are the standard deviation and mean, respectively.

2.5. Effects of elevated core temperature

We observed several physiological responses including those of Thand, VD, and HR during the
Tcore elevation. The responses of one subject are shown in Fig. 4. After undergoing passive heat
stress for 60 min, the participants rested for 40 min to stabilize the increased Tcore.

2.6. Estimation of Tcore

The experimental data were divided into two phase groups for predicting Tcore in our model:
thermal elevation and relaxation time. In the relaxation phase, we observed a linear decreasing
trend. In our analysis, Tcore was considered as output or prediction values; other measured
variables were considered as predictors. A multiple linear regression (MLR) model was built to
predict Tcore, in which Thand, HR, and VD were considered as predictors. The predictors showed
linear change with Tcore, as shown in Fig. 4. The obtained data were made dimensionless by
dividing the observed value by the initial value. These fractionated values were used in MLR
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Fig. 4. Thermal response of one subject to core temperature (Tcore) elevation. The green,
orange, and blue bars in the panels indicate the resting, heat stress, and relaxation phases,
respectively. Heart rate (HR), hand skin temperature (Thand), and Tcore increased at the
thermal stress phase and decreased at the relaxation phase, as shown in (a), (b), and (c),
respectively. (d) Processed images of dorsal metacarpal vein in a region of interest (ROI)
under control, warm, and cool conditions. The insets are cropped images of the veins in
the ROI at different time points indicated in (e). (e) Vein diameter (VD) versus time plot,
showing that the VD variation follows the trend of Tcore change.

model for building the prediction model:

Tcore

Tcore, rest
− 1 = A

(︃
VD

VDrest
− 1

)︃
+ B

(︃
HR

HRrest
− 1

)︃
+ C

(︃
Thand

Thand, rest
− 1

)︃
. (2)

2.7. Validation of prediction model

To validate the newly generated prediction model, we applied the datasets contained in the stored
computer documents. After training, the differences of the fractionated Tcore and predicted Tcore
were used to create a Bland–Altman plot, and the mean of the difference was measured. The
difference was later subtracted from the test fractionated prediction value.

3. Results and discussion

The thermal protocol was successful in eliciting the desired manipulations of whole-body
temperature, as shown in Fig. 4. We observed several physiological responses such as Thand, VD,
and HR during the Tcore elevation. The responses of all subjects are shown in Fig. 5(a), (c), (e),
and (g). After undergoing passive heat stress for 60 min, the participants rested for 40 min to
stabilize the increased Tcore. Further, we generated non-dimensional data from the raw data by
measuring the corresponding fractional change and normalizing the result by subtracting 1 from
the fraction. The non-dimensional data are shown in Fig. 5(b), (d), (f), and (h). The average
minimum, maximum, and elevated temperatures recorded for all the participants were 37.1°C,
37.4°C, and 0.3°C, respectively.

Scatter plots of the measured Tcore predictions at the thermal stress phase and the following
relaxing phase are presented in Fig. 6(a) and (c) respectively. In the development of the
MLR-based prediction model for Tcore at the thermal phase, the contribution of Thand was more
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Fig. 5. Thermal responses of all subjects (n= 12) after leg immersion in hot water for 60
min. The plots in (a), (c), (e), and (g) include raw data for Tcore, HR, Thand , and VD response
measured every 1 min, respectively. The plots in (b), (d), (f), and (h) show fractional changes
in Tcore, HR, Thand , and VD, respectively. The orange and blue bars in (a) and (b) indicate
the thermal stress and relaxation phases, respectively. The black solid lines show the average
of the thermal responses of all subjects.
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significant than that of HR and VD. The corresponding coefficient was measured to be 0.014,
shown as C in Eq. (2). The prediction difference was calculated as shown in Fig. 6(b). The bias
of this measurement was found to be −0.05°C, and the lower and upper limits of agreement
(LOA) were −0.2°C and +0.09°C, respectively.

Fig. 6. (a) Tcore prediction at the thermal phase. (b) Difference between predicted and
measured Tcore (∆Tcore) plotted against the mean Tcore. (c) Scatter plot between measured
and predicted Tcore at the relaxing phase. The red and blue circles represent the predicted
values excluding and including VD, respectively. The black straight and dashed lines in the
scatter plot represent agreement between the measured and predicted values including and
excluding VD. (d) Bland–Altman plot showing the limit of agreement for predicting Tcore
including and excluding VD in the MLR model.

In the cooling phase, the coefficient of determination (R2) was higher, at R2 = 0.94, when
VD was considered in the model as a predictor, as shown in Fig. 6(c). However, the value was
lower, at R2 = 0.68, when VD was not introduced in Eq. (2). An increment of 26% was observed
between these two measurements. The Bland–Altman plot shown in Fig. 6(d) demonstrates the
deviation of prediction from the measured value of Tcore. Specifically, the measurement bias was
observed to be 0.06°C (0.05°C) when VD was (was not) included in the prediction model. The
coefficients were measured for the MLR model as 0.043 and 0.008 for B and C, respectively, in
Eq. (2) when predicted without using VD. In addition, the R2 was 0.68 (0.94) for the average
cooling phase when excluding (including) VD, as shown in Fig. 6(c). In this case, the coefficients
were found to be 0.013, 0.02, and zero for A, B, and C, respectively in Eq. (2). The Thand did not
contribute when VD was introduced in the MLR prediction model.

The MLR model was trained using the averages of all physiological parameters of the
participants; the validation results showed good agreement in the predicted Tcore during the
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relaxation phase, as shown in Fig. 7. The data of each subject were then evaluated according to
the obtained coefficients and the regression model, as shown in Fig. 7(a) and (b). The linearity
between the measured and predicted value was determined by the R2 value to be 0.66. The
Bland–Altman plot used for demonstrating the difference (∆Tcore) between the measured and
predicted values is shown in Fig. 7(b).

Fig. 7. Multiple linear regression analysis and prediction accuracy according to
Bland–Altman analysis. (a) Accuracy of R2 prediction by considering VD in the MLR
prediction model. (b) Bland–Altman plot showing the maximum possible difference from
the measured values.

Although we obtained good agreement in predicting Tcore, as shown in Fig. 7, we further tested
the model with data obtained from five subjects. The fractionated Tcore showed good agreement
between the measured and predicted Tcore. The fractionated Tcore values were further converted to
dimensional Tcore values for comparison with the original Tcore values. The linearity between the
measured and predicted values yielded R2 = 0.88, as shown in Fig. 8(a). The original deviation
of Tcore was measured by the Bland–Altman plot shown in Fig. 8(b).

The test subject results are shown in Fig. 8(c), which also plots the 40 min time sequence
for the measured and predicted Tcore. In the plot, the predicted temperature showed trends of
decrease with time, which is similar to that of the measured value. The predicted Tcore showed
good agreement with the measured values, as shown by R2 = 0.87. The maximum and minimum
deviations were +0.48°C and −0.23°C, respectively. The bias was calculated to be 0.08, and
the lower and upper LOA were −0.18°C and +0.35°C, respectively. The plot shown in Fig. 8(c)
includes the data of the five subjects validated using the MLR model. The predicted Tcore
maintained similar decrease trends with time as that of the measured value.

This study aimed to define the validity of a novel parameter for predicting Tcore under two
different conditions: during Tcore elevation and relaxation under controlled room temperature
and humidity. However, the thermal phase was not validated by testing in this study owing to
a narrow temperature range and a lower estimation, as shown in Fig. 6(a). Moreover, during
the thermal phase, Tcore elevation varied among the subjects, as shown in Fig. 5(a). Although
all subjects showed a similar pattern of Tcore throughout the experiment, their Tcore elevation
occurred at different times during leg immersion. Thus, for validation of the MLR model, we
included only the resting phase analysis.

We demonstrated that a small number of parameters can be used to predict Tcore using a simple
MLR model. The present findings confirmed that during relaxation of Tcore, the agreement
(R2 = 0.64) between the predicted and measured values was low, as shown in Fig. 6(c). However,
the R2 was 0.94 for the relaxation phase when VD was introduced in the model. The test R2
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Fig. 8. Prediction model validated using the test data. (a) Good linearity (R2 = 0.88)
shown with the test sets of data for predicting Tcore. (b) The error was measured within an
acceptable range. (c) Time course of Tcore measurement plotted to observe similar trends
between the measured (solid line) and predicted (dotted line) values.

value was 0.88, and the difference between the measured and predicted Tcore was within −0.18 to
+0.35°C, which is <0.5°C and thus considered to be within the acceptance criteria [5,32].

It is worth mentioning that traditional Tcore prediction models are generally determined on
the basis of many collected non-invasive parametric data, and a set of suitable parameters is
determined for the final prediction model construction. However, our study included a limited
choice of predictor parameters. Considering that this prediction model is designed to be used for
peripheral parts of the body only, all of the data can be collected from a non-contact source such
as an imaging system. The NIR imaging system can visualize the hand vein and is thus highly
efficient for biometric authentication [33]. A popular and accurate method is HR measurement
using an NIR light source [34]. In addition, a non-contact infrared temperature sensor such as
MLX90614 [35] is gaining popularity for measuring Thand. A future direction of this work is to
integrate these devices to build a prediction model for Tcore estimation. In addition to personal
health monitoring, this technique can be implemented in houses or electric vehicles for suggesting
helpful techniques for managing energy-efficient thermal comfort.

The current study has several limitations. The sample size was relatively small, and only
male volunteers were included. Women were not included to avoid bias owing to differences
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in hormonal status between measurement sessions, which could affect both the static and
dynamic superficial veins. To validate the NIR imaging method proposed in our study, the rectal
temperature range should be ∼39.2°C, indicating a 2°C increase. The present study, however,
was originally planned with increases of 1°C to ensure safety in experiments involving human
subjects. To expand the range in rectal temperature, endogenous heating (e.g., exercise) under
thermal stress is required. Passive heating (e.g., leg immersion) alone is insufficient for inducing
an increase of 2.0°C. Thus, further studies are planned to cover 1.5°C−2.0°C increase in rectal
temperature.

4. Conclusions

The current study evaluated the contribution of VD as a novel parameter for predicting Tcore.
This parameter along with other predictors such as Thand and HR increased the agreement of the
linear regression model, which was validated under a controlled climate. The observed level of
agreement, at 95% LoA, −0.18 to +0.35°C, was within the criteria set for monitoring deep body
temperature. Vasodilation during Tcore elevation was demonstrated through NIR imaging. This
study can be replicated to determine the subject’s thermal comfort based on knowledge of the
Tcore. Moreover, this Tcore prediction method can be integrated in many facilities for enhancing
quality of life. For example, the present imaging technique can be used in indoor fitness facilities
as well as in personal vehicles to obtain Tcore information of the user.
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